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1. If v(t) is smooth for any t such that a ≤ t ≤ b. Show how the arc-length formula

S =

∫ b

a

∥v′(t)∥dt

can be derived by approximating the curve v(t) by straight line segments and taking
a limit.

Solution. The idea is we approximate the curve v(t) by straight segments. We
pick points t0 = a, t1, t2, . . . , tn−1, tn = b and connect these points by line segments
v(ti)− v(ti−1) for i = 1, . . . , n. Note that v(ti)− v(ti−1) is a vector. Then the length
of the curve S is approximately

S ≈
n∑

i=1

∥v(ti)− v(ti−1)∥.

Recall that the velocity vector at the point on the curve v(ti) is given by

v′(ti) = lim
t→ti

v(t)− v(ti)

t− ti
.

Then substituting this in to the expression above (the ti−1’s are “close” to ti and
the approximate gets better as we take n → +∞) we continue to approximate

S ≈
n∑

i=1

∥v(ti)− v(ti−1)∥

≈
n∑

i=1

∥v′(ti)∥(ti − ti−1).

We recognize this last expression as a Riemann sum and hence taking n → +∞, we
see that

S ≈
n∑

i=1

∥v′(ti)∥(ti − ti−1) →
∫ b

a

∥v′(t)∥dt

as required. ◀

2. Let f : [a, b] → R and g : [a, b] → [a, b] be continuous. Using the ε− δ definition of
continuity, show that

lim
x→a

f(g(x)) = f(lim
x→a

g(x)) = f(g(a)).
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Solution. Let ε > 0 be given. We want to show that there is a δ > 0 such that
for 0 < x− a < δ, |f(g(x))− f(g(a))| < ε. Since f is continuous at g(a), there is a
δ1 > 0 such that for all |y−g(a)| < δ1, we have that |f(y)−f(g(a))| < ε. Now since
g is continuous at a, there is a δ2 > 0 such that for all 0 < x − a < δ2 (remember
that x is in the interval [a, b]) such that |g(x)− g(a)| < δ1. Then taking δ = δ2 and
y = g(x) yields the desired result. ◀

3. For a function f of one variable, construct a function such that

(a) f is differentiable everywhere, and

(b) f ′ is bounded everywhere, but

(c) f ′ is not Riemann-integrable.

Solution. Note: Since the solution for this question is more difficult, I was more
generous in the grading of this question.

The function that satisfies the conditions (a), (b), and (c) is called the Volterra’s
function, which we roughly explain below:

Let V be the Smith–Volterra–Cantor set, which is defined by an infinite process of
removing intervals from the unit interval [0, 1]. We first remove the middle 1/4 from
the interval [0, 1], so that what remains is

V1 :=

[
0,

3

8

]
∪
[
5

8
, 1

]
.

Then we inductively remove subintervals of width 1/4n from the middle of each of
the 2n−1 remaining intervals. For example, at the second step we are left with

V2 :=

[
0,

5

32

]
∪
[
7

32
,
3

8

]
∪
[
5

8
,
25

32

]
∪
[
27

32
, 1

]
.

The Smith–Volterra–Cantor set V is what remains of the interval [0, 1] after infinitely
many of these removals. By construction, V contains no intervals and therefore has
empty interior, and is the intersection of closed sets and hence is closed. Intervals
of total length

∞∑
n=0

2n

22n+2
=

1

4
+

1

8
+

1

16
+ · · · = 1

2

are removed from [0, 1], which means that V consists only of boundary points and
has a positive measure of 1/2.

We now consider the function f defined by

f(x) =

x2 sin

(
1

x

)
, x ̸= 0

0, x = 0.

Then for x ̸= 0, note that f ′(x) = 2x sin

(
1

x

)
−cos

(
1

x

)
which we observe oscillates

between −1 and 1 infinitely fast at 0. We construct Volterra’s function by placing
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countably many copies of f on the deleted intervals of the Smith–Volterra–Cantor
set V . We first define f1. Let x0 be the largest value of x in the interval

[
0, 1

8

]
such

that f ′(x0) = 0. Then we define f̃1 on

[
0,

1

8

]
by

f̃1(x) :=

{
f(x), 0 ≤ x ≤ x0

f(x0), x0 ≤ x ≤ 1
8
.

We now extend f̃1 to the interval

[
0,

1

4

]
by reflecting it across the vertical line

x =
1

8
, i.e., we define f̂1 on

[
0,

1

4

]
by

f̂1(x) :=

{
f̃1(x), 0 ≤ x ≤ 1

8

f̃1
(
−x+ 1

4

)
, 1

8
≤ x ≤ 1

4
.

Note that since f(0) = 0, f̂1(0) = 0 and f̂1
(
1
4

)
= 0. Finally we define f1 on [0, 1]

by translating f̂1 to the subinterval
[
3
8
, 5
8

]
(the first subinterval removed in the first

step of constructing V ) and defining f1 to be 0 outside this subinterval. That is,

f1(x) :=


0, 0 ≤ x ≤ 3

8

f̂1
(
x− 3

8

)
, 3

8
≤ x ≤ 5

8

0, 5
8
≤ x ≤ 1.

Note that by construction, f1 is 0 on V1 and non-zero only on [0, 1] \ V1 and f1

oscillates infinitely fast between 1 and −1 at the points x =
3

8
and x =

5

8
. We

repeat repeat this construction on the subintervals
[

5
32
, 7
32

]
and

[
25
32
, 27
32

]
and add it

to f1 to produce f2 and so on so that fn is non-zero only on [0, 1] \Vn and oscillates
infinitely fast between 1 and −1 on the boundary of Vn. Finally Volterra’s function
v is defined as the limit of this sequence of functions f1, f2, . . . , fn, . . . .

Then by construction since f is differentiable everywhere v is differentiable every-
where with bounded derivative on [0, 1]. However, v′ is discontinuous on the Smith–
Volterra–Cantor set V (since it oscillates infinitely fast on the boundary of V and V
equals its own boundary). Since v′ is discontinuous on a set of positive measure, it
is not Riemann integrable by the Lebesgue criterion for Riemann integrability, and
we are done. ◀


