THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2010F Advanced Calculus I Homework 1 Due Date: 11:59pm, 6 June, 2025

1. If v(t) is smooth for any t such that $a \leq t \leq b$. Show how the arc-length formula

$$S = \int_{a}^{b} \|v'(t)\| dt$$

can be derived by approximating the curve v(t) by straight line segments and taking a limit.

Solution. The idea is we approximate the curve v(t) by straight segments. We pick points $t_0 = a, t_1, t_2, \ldots, t_{n-1}, t_n = b$ and connect these points by line segments $v(t_i) - v(t_{i-1})$ for $i = 1, \ldots, n$. Note that $v(t_i) - v(t_{i-1})$ is a vector. Then the length of the curve S is approximately

$$S \approx \sum_{i=1}^{n} ||v(t_i) - v(t_{i-1})||.$$

Recall that the velocity vector at the point on the curve $v(t_i)$ is given by

$$v'(t_i) = \lim_{t \to t_i} \frac{v(t) - v(t_i)}{t - t_i}.$$

Then substituting this in to the expression above (the t_{i-1} 's are "close" to t_i and the approximate gets better as we take $n \to +\infty$) we continue to approximate

$$S \approx \sum_{i=1}^{n} \|v(t_i) - v(t_{i-1})\|$$
$$\approx \sum_{i=1}^{n} \|v'(t_i)\|(t_i - t_{i-1}).$$

We recognize this last expression as a Riemann sum and hence taking $n \to +\infty$, we see that

$$S \approx \sum_{i=1}^{n} \|v'(t_i)\|(t_i - t_{i-1}) \to \int_a^b \|v'(t)\|dt$$

as required.

2. Let $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to [a, b]$ be continuous. Using the $\varepsilon - \delta$ definition of continuity, show that

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) = f(g(a)).$$

Solution. Let $\varepsilon > 0$ be given. We want to show that there is a $\delta > 0$ such that for $0 < x - a < \delta$, $|f(g(x)) - f(g(a))| < \varepsilon$. Since f is continuous at g(a), there is a $\delta_1 > 0$ such that for all $|y - g(a)| < \delta_1$, we have that $|f(y) - f(g(a))| < \varepsilon$. Now since g is continuous at a, there is a $\delta_2 > 0$ such that for all $0 < x - a < \delta_2$ (remember that x is in the interval [a, b]) such that $|g(x) - g(a)| < \delta_1$. Then taking $\delta = \delta_2$ and y = g(x) yields the desired result.

- 3. For a function f of one variable, construct a function such that
 - (a) f is differentiable everywhere, and
 - (b) f' is bounded everywhere, but
 - (c) f' is not Riemann-integrable.

Solution. Note: Since the solution for this question is more difficult, I was more generous in the grading of this question.

The function that satisfies the conditions (a), (b), and (c) is called the Volterra's function, which we roughly explain below:

Let V be the Smith–Volterra–Cantor set, which is defined by an infinite process of removing intervals from the unit interval [0, 1]. We first remove the middle 1/4 from the interval [0, 1], so that what remains is

$$V_1 := \left[0, \frac{3}{8}\right] \cup \left[\frac{5}{8}, 1\right].$$

Then we inductively remove subintervals of width $1/4^n$ from the middle of each of the 2^{n-1} remaining intervals. For example, at the second step we are left with

$$V_2 := \left[0, \frac{5}{32}\right] \cup \left[\frac{7}{32}, \frac{3}{8}\right] \cup \left[\frac{5}{8}, \frac{25}{32}\right] \cup \left[\frac{27}{32}, 1\right].$$

The Smith–Volterra–Cantor set V is what remains of the interval [0, 1] after infinitely many of these removals. By construction, V contains no intervals and therefore has empty interior, and is the intersection of closed sets and hence is closed. Intervals of total length

$$\sum_{n=0}^{\infty} \frac{2^n}{2^{2n+2}} = \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = \frac{1}{2}$$

are removed from [0, 1], which means that V consists only of boundary points and has a positive measure of 1/2.

We now consider the function f defined by

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & x \neq 0\\ 0, & x = 0. \end{cases}$$

Then for $x \neq 0$, note that $f'(x) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$ which we observe oscillates between -1 and 1 infinitely fast at 0. We construct Volterra's function by placing

countably many copies of f on the deleted intervals of the Smith–Volterra–Cantor set V. We first define f_1 . Let x_0 be the largest value of x in the interval $\left[0, \frac{1}{8}\right]$ such that $f'(x_0) = 0$. Then we define \tilde{f}_1 on $\left[0, \frac{1}{8}\right]$ by

$$\tilde{f}_1(x) := \begin{cases} f(x), & 0 \le x \le x_0 \\ f(x_0), & x_0 \le x \le \frac{1}{8}. \end{cases}$$

We now extend \tilde{f}_1 to the interval $\begin{bmatrix} 0, \frac{1}{4} \end{bmatrix}$ by reflecting it across the vertical line $x = \frac{1}{8}$, i.e., we define \hat{f}_1 on $\begin{bmatrix} 0, \frac{1}{4} \end{bmatrix}$ by $\hat{f}_1(x) := \begin{cases} \tilde{f}_1(x), & 0 \le x \le \frac{1}{8} \\ \tilde{f}_1\left(-x + \frac{1}{4}\right), & \frac{1}{8} \le x \le \frac{1}{4}. \end{cases}$

Note that since f(0) = 0, $\hat{f}_1(0) = 0$ and $\hat{f}_1\left(\frac{1}{4}\right) = 0$. Finally we define f_1 on [0, 1] by translating \hat{f}_1 to the subinterval $\left[\frac{3}{8}, \frac{5}{8}\right]$ (the first subinterval removed in the first step of constructing V) and defining f_1 to be 0 outside this subinterval. That is,

$$f_1(x) := \begin{cases} 0, & 0 \le x \le \frac{3}{8} \\ \hat{f}_1\left(x - \frac{3}{8}\right), & \frac{3}{8} \le x \le \frac{5}{8} \\ 0, & \frac{5}{8} \le x \le 1. \end{cases}$$

Note that by construction, f_1 is 0 on V_1 and non-zero only on $[0,1] \setminus V_1$ and f_1 oscillates infinitely fast between 1 and -1 at the points $x = \frac{3}{8}$ and $x = \frac{5}{8}$. We repeat repeat this construction on the subintervals $\left[\frac{5}{32}, \frac{7}{32}\right]$ and $\left[\frac{25}{32}, \frac{27}{32}\right]$ and add it to f_1 to produce f_2 and so on so that f_n is non-zero only on $[0,1] \setminus V_n$ and oscillates infinitely fast between 1 and -1 on the boundary of V_n . Finally Volterra's function v is defined as the limit of this sequence of functions $f_1, f_2, \ldots, f_n, \ldots$.

Then by construction since f is differentiable everywhere v is differentiable everywhere with bounded derivative on [0, 1]. However, v' is discontinuous on the Smith–Volterra–Cantor set V (since it oscillates infinitely fast on the boundary of V and V equals its own boundary). Since v' is discontinuous on a set of positive measure, it is not Riemann integrable by the Lebesgue criterion for Riemann integrability, and we are done.